Bibilography

Bibilography#

[BCG03]

Sudipto Banerjee, Bradley P Carlin, and Alan E Gelfand. Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC, 2003.

[Bet17]

Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv preprint arXiv:1701.02434, 2017.

[BCJ+19]

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: deep universal probabilistic programming. J. Mach. Learn. Res., 20:28:1–28:6, 2019. URL: http://jmlr.org/papers/v20/18-403.html.

[Ble14]

David M Blei. Build, compute, critique, repeat: data analysis with latent variable models. Annual Review of Statistics and Its Application, 1(1):203–232, 2014.

[BFH+18]

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs. 2018. URL: jax-ml/jax.

[Gel07]

Andrew Gelman. Data analysis using regression and multilevel/hierarchical models. Cambridge university press, 2007.

[GVS+20]

Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. Bayesian workflow. arXiv preprint arXiv:2011.01808, 2020.

[Gra20]

Robert B Gramacy. Surrogates: Gaussian process modeling, design, and optimization for the applied sciences. Chapman and Hall/CRC, 2020.

[MU49]

Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of the American statistical association, 44(247):335–341, 1949.

[Mur23]

Kevin P Murphy. Probabilistic machine learning: Advanced topics. MIT press, 2023.

[PPJ19]

Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable effects for flexible and accelerated probabilistic programming in numpyro. arXiv preprint arXiv:1912.11554, 2019.

[RC04]

C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer Verlag, 2004.

[RCRC04]

Christian P Robert, George Casella, Christian P Robert, and George Casella. The metropolis—hastings algorithm. Monte Carlo statistical methods, pages 267–320, 2004.

[SAAG24]

Daniel Sanz-Alonso and Omar Al-Ghattas. A first course in monte carlo methods. arXiv preprint arXiv:2405.16359, 2024.

[SSS00]

Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis and its applications. Volume 3. Springer, 2000.

[VGG17]

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical bayesian model evaluation using leave-one-out cross-validation and waic. Statistics and computing, 27:1413–1432, 2017.

[WR06]

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning. Volume 2. MIT press Cambridge, MA, 2006.

[vStrumbeljBCoteC+24]

Erik Štrumbelj, Alexandre Bouchard-Côté, Jukka Corander, Andrew Gelman, Håvard Rue, Lawrence Murray, Henri Pesonen, Martyn Plummer, and Aki Vehtari. Past, present and future of software for bayesian inference. Statistical Science, 39(1):46–61, 2024.